Data Engineering Zoomcamp: Free Data Engineering course. Register here!

DataTalks.Club

Distributed Machine Learning Patterns

by Yuan Tang

The book of the week from 15 Jan 2024 to 19 Jan 2024

Distributed machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations. This book reveals best practice techniques and insider tips for tackling the challenges of scaling machine learning systems.

In Distributed Machine Learning Patterns you will learn how to:

  • Apply distributed systems patterns to build scalable and reliable machine learning projects
  • Build ML pipelines with data ingestion, distributed training, model serving, and more
  • Automate ML tasks with Kubernetes, TensorFlow, Kubeflow, and Argo Workflows
  • Make trade-offs between different patterns and approaches
  • Manage and monitor machine learning workloads at scale

Inside Distributed Machine Learning Patterns you’ll learn to apply established distributed systems patterns to machine learning projects—plus explore cutting-edge new patterns created specifically for machine learning. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Hands-on projects and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines.

To take part in the book of the week event:

  • Register in our Slack
  • Join the #book-of-the-week channel
  • Ask as many questions as you'd like
  • The book authors answer questions from Monday till Thursday
  • On Friday, the authors decide who wins free copies of their book

To see other books, check the the book of the week page.

Subscribe to our weekly newsletter and join our Slack.
We'll keep you informed about our events, articles, courses, and everything else happening in the Club.


DataTalks.Club. Hosted on GitHub Pages. We use cookies.