Skip to main content Link Menu Expand (external link) Document Search Copy Copied
  • Home
  • Machine Learning Zoomcamp 2025
    • 1. Your First Actions
    • 2. Course Curriculum
    • 3. What's New in 2025
    • 4. Homework, Leaderboard and Deadlines
    • 5. Certification and Projects
    • 6. Getting Help Effectively
    • 7. Prerequisites
    • 8. Additional Resources and Support
    • 9. Strategies for Success
  • Machine Learning Zoomcamp Notes
    • Module 1: Introduction to Machine Learning
      • 1. What Is Machine Learning?
      • 2. ML vs Rule-Based Systems
      • 3. Supervised Machine Learning
      • 4. CRISP-DM
      • 5. Model Selection
      • 6. GitHub Codespaces
      • 7. Introduction to NumPy
      • 8. Linear Algebra Refresher
      • 9. Introduction to Pandas
      • 10. Summary
    • Module 2: Machine Learning for Regression
      • 1. Car Price Prediction
      • 2. Data Preparation
      • 3. Exploratory Data Analysis
      • 4. Validation Framework
      • 5. Linear Regression
      • 6. Linear Regression in Vector & Matrix Form
      • 7. Training the Model (Normal Equation)
      • 8. Baseline Model
      • 9. Evaluating a Regression Model with RMSE
      • 10. Validating an ML Model
      • 11. Feature Engineering
      • 12. Categorical Variables
      • 13. Regularization
      • 14. Tuning Model
      • 15. Using Model
      • 16. Summary
    • Module 3: Machine Learning for Classification
      • 1. Churn Prediction Project
      • 2. Data Preparation
      • 3. Setting Up the Validation Framework
      • 4. EDA
      • 5. Feature importance: Churn rate and risk ratio
      • 6. Feature importance: Mutual information
      • 7. Feature importance: Correlation
      • 8. One-hot encoding
    • Module 4: Evaluation Metrics for Classification
      • 1. Evaluation metrics: session overview
      • 2. Accuracy and dummy model
      • 3. Confusion Table
      • 4. Precision and Recall
      • 5. ROC Curves
      • 6. ROC AUC
      • 7. Cross Validation
      • 8. Summary
    • Module 5: Deploying Machine Learning Models
      • 1. Intro / Session overview
      • 2. Saving and loading the model
      • 3. Web services: introduction to Flask
      • 4. Serving the churn model with Flask
      • 5. Python virtual environment: Pipenv
      • 6. Environment management: Docker and Docker Hub
      • 7. Deployment to the cloud: AWS Elastic Beanstalk (optional)
      • 8. Summary
    • Module 6: Decision Trees and Ensemble Learning
      • 1. Credit risk scoring project
      • 2. Data cleaning and preparation
      • 3. Decision trees
      • 4. Decision tree learning algorithm
      • 5. Decision trees parameter tuning
      • 6. Ensemble learning and random forest
      • 7. Gradient boosting and XGBoost
      • 8. XGBoost parameter tuning
      • 9. Selecting the best model
      • 10. Summary
    • Module 8: Neural Networks and Deep Learning
      • 1. Fashion classification
      • 1b. Setting up the Environment on Saturn Cloud
      • 2. TensorFlow and Keras
      • 3. Pre-trained convolutional neural networks
      • 4. Convolutional neural networks
      • 5. Transfer learning
      • 6. Adjusting the learning rate
      • 7. Checkpointing
      • 8. Adding more layers
      • 9. Regularization and dropout
      • 10. Data augmentation
      • 11. Training a larger model
      • 12. Using the model
      • 13. Summary
    • Module 9: Serverless Deep Learning
      • 1. Introduction to Serverless
      • 2. AWS Lambda
      • 3. TensorFlow Lite
      • 4. Preparing the code for Lambda
      • 5. Preparing a Docker image
      • 6. Creating the lambda function
      • 7. API Gateway: exposing the lambda function
      • 8. Summary
    • Module 10: Kubernetes and TensorFlow Serving
      • 1. Overview
      • 2. TensorFlow Serving
      • 3. Creating a pre-processing service
      • 4. Running everything locally with Docker-compose
      • 5. Introduction to Kubernetes
      • 6. Deploying a simple service to Kubernetes
      • 7. Deploying TensorFlow models to Kubernetes
      • 8. Deploying to EKS
      • 9. Summary
    • Module 11: KServe
      • 1. Overview
      • 2. Running KServe locally
      • 3. Deploying a Scikit-Learn model with KServe
      • 4. Deploying custom Scikit-Learn images with KServe
      • 5. Serving TensorFlow models with KServe
      • 6. KServe transformers
      • 7. Deploying with KServe and EKS
  • How To Contribute
  • DataTalks.Club
  • DataTalks.Club
  1. Machine Learning Zoomcamp Notes
  2. Module 8: Neural Networks and Deep Learning
  3. 13. Summary

Back to top

Edit this page on GitHub