Python FAQ
This guide covers common Python issues and their solutions for the Data Engineering Zoomcamp, including environment setup, data processing, and database connections.
Table of contents
Environment & Dependencies
ModuleNotFoundError for pysqlite2
Problem:
ImportError: DLL load failed while importing _sqlite3: The specified module could not be found.
ModuleNotFoundError: No module named 'pysqlite2'
Root Cause: Missing sqlite3.dll
in the Anaconda DLLs path.
Solution: Copy the missing DLL file:
- Navigate to
\Anaconda3\Library\bin
- Copy
sqlite3.dll
- Paste it to
.\Anaconda\Dlls\
ModuleNotFoundError for psycopg2
Problem:
ModuleNotFoundError: No module named 'psycopg2'
Root Cause: The psycopg2 PostgreSQL adapter is not installed.
Solution: Install psycopg2:
# Using pip
pip install psycopg2-binary
# Using conda
conda install psycopg2
TypeAliasType import error with SQLAlchemy
Problem:
ImportError: cannot import name 'TypeAliasType' from 'typing_extensions'
Root Cause: Outdated typing_extensions
module (needs version >= 4.6.0).
Solution: Update typing_extensions:
# Using pip
pip install --upgrade typing_extensions
# Using conda
conda update typing_extensions
Data Ingestion & Processing
Missing 100,000 records in data ingestion
Problem: First chunk of 100,000 records missing when re-running the Jupyter notebook for NY Taxi Data ingestion.
Root Cause: There’s a call to the iterator (df=next(df_iter)
) before the while loop, causing the loop to start with the second chunk.
Solution: Remove the premature iterator call:
- Delete the cell containing
df=next(df_iter)
that appears before the while loop - The first call to
next(df_iter)
should be within the while loop
Note: This notebook is for testing purposes and wasn’t designed to run top-to-bottom. The logic is properly organized in the final .py
pipeline file.
Parsing dates when reading CSV files
Problem: Need to convert string columns to datetime after reading CSV.
Solution: Use the parse_dates
parameter in pd.read_csv()
:
import pandas as pd
df = pd.read_csv(
'yellow_tripdata_2021-01.csv',
nrows=100,
parse_dates=['tpep_pickup_datetime', 'tpep_dropoff_datetime']
)
The parse_dates
parameter accepts:
- List of column names
- List of column indices
- Dictionary for custom parsing
File Handling
Reading gzipped CSV files
Problem: Unable to read .csv.gz
files with Pandas.
Solution: Pandas can read gzipped CSV files directly:
df = pd.read_csv(
'file.csv.gz',
compression='gzip',
low_memory=False
)
Alternative: Let Pandas auto-detect compression:
df = pd.read_csv('file.csv.gz') # Auto-detects gzip compression
Iterating through Parquet files
Problem: Parquet files don’t have a chunksize
parameter for batch processing.
Root Cause: Parquet format requires different iteration methods than CSV.
Solution: Use PyArrow for batch processing:
import pyarrow.parquet as pq
from time import time
# Setup
output_name = "https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2021-01.parquet"
parquet_file = pq.ParquetFile(output_name)
parquet_size = parquet_file.metadata.num_rows
table_name = "yellow_taxi_schema"
# Clear table if exists (create schema)
pq.read_table(output_name).to_pandas().head(n=0).to_sql(
name=table_name,
con=engine,
if_exists='replace'
)
# Process in batches (default/max batch size: 65536)
index = 65536
for i in parquet_file.iter_batches(use_threads=True):
t_start = time()
print(f'Ingesting {index} out of {parquet_size} rows ({index / parquet_size:.0%})')
i.to_pandas().to_sql(
name=table_name,
con=engine,
if_exists='append'
)
index += 65536
t_end = time()
print(f'\t- it took %.1f seconds' % (t_end - t_start))
Downloading data with curl
Problem: Python failing to ingest data using curl commands.
Solution: Use the correct curl command format:
import os
# Correct format with -L flag for redirects and -O for output
os.system(f"curl -LO {url} -o {csv_name}")
Flags explained:
-L
: Follow redirects-O
: Write output to file with remote name-o
: Specify output filename
Database & SQLAlchemy Issues
TypeError with SQLAlchemy create_engine
Problem:
TypeError: 'module' object is not callable
Root Cause: Incorrect connection string format or import issue.
Solution: Use the correct PostgreSQL connection string:
from sqlalchemy import create_engine
# Correct format
conn_string = "postgresql+psycopg://root:root@localhost:5432/ny_taxi"
engine = create_engine(conn_string)
NoSuchModuleError with PostgreSQL dialect
Problem:
NoSuchModuleError: Can't load plugin: sqlalchemy.dialects:postgresql.psycopg
Root Cause: Conflicting virtual environments or missing dependencies.
Solution: Clean environment setup:
- Remove existing virtual environment:
rm -rf .venv
- Create new conda environment:
conda create -n pyingest python=3.12 conda activate pyingest
- Install required dependencies:
pip install pandas sqlalchemy psycopg2-binary jupyterlab
- Use correct connection string:
connection_string = f"postgresql+psycopg2://{db_user}:{db_password}@{db_host}:{db_port}/{db_name}"
OptionEngine error with read_sql_query
Problem:
'OptionEngine' object has no attribute 'execute'
Root Cause: SQLAlchemy version compatibility issue with Pandas.
Solution: Update packages and use text()
wrapper:
from sqlalchemy import text
import pandas as pd
# Update packages first
# pip install --upgrade sqlalchemy pandas
# Wrap queries with text()
query = text("""SELECT * FROM tbl""")
df = pd.read_sql_query(query, conn)